UBND TỈNH BẮC NINH SỞ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI CHỌN ĐỘI TUYỂN DỰ THI HỌC SINH GIỚI QUỐC GIA THPT NĂM HỌC 2024-2025

ĐỀ CHÍNH THỨC Môn thi: Tin học

Thời gian làm bài: 180 phút (không kể thời gian giao đề)

(Đề thi có 04 trang)

Ngày thi: 21 tháng 08 năm 2024

Tổng quan đề thi:

| Bài   | Chương trình | Input       | Output      | Điểm |
|-------|--------------|-------------|-------------|------|
| Bài 1 | BALANCE.*    | BALANCE.INP | BALANCE.OUT | 5    |
| Bài 2 | MCHAR.*      | MCHAR.INP   | MCHAR.OUT   | 5    |
| Bài 3 | INCSEQ.*     | INCSEQ.INP  | INCSEQ.OUT  | 5    |
| Bài 4 | PATH.*       | PATH.INP    | PATH.OUT    | 5    |

(Ghi chú: \* là CPP hoặc PAS, PY, ... tùy theo ngôn ngữ lập trình mà thí sinh sử dụng)

# Bài 1. Cân bằng

Một dãy  $a_1, a_2, ..., a_n$  độ dài n được gọi là cân bằng nếu có thể chia dãy thành hai đoạn liên tiếp có tổng bằng nhau, tức là tồn tại một vị trí p  $(1 \le p < n)$  sao cho tổng giá trị của p phần tử đầu đúng bằng của (n-p) phần tử cuối:

$$\sum_{i=1}^{p} a_i = \sum_{i=p+1}^{n} a_i$$

Cho một dãy  $a_1, a_2, ..., a_n$  độ dài n. Bạn có thể biến đổi dãy  $a_1, a_2, ..., a_n$  bằng cách thực hiện thao tác sau số lần tùy ý. Mỗi lần thực hiện thao tác có thể tùy ý lựa chọn một trong hai hành động:

- Chọn một vị trí i  $(1 \le i \le n)$  và tăng  $a_i$  lên 1
- Chọn một vị trí i  $(1 \le i \le n)$  mà  $a_i > 1$  và trừ  $a_i$  cho 1

Hãy thực hiện thao tác trên ít lần nhất để làm cho dãy a cân bằng.

Dữ liệu: vào từ tệp BALANCE.INP gồm

- Dòng đầu tiên chứa số nguyên n ( $2 \le n \le 2 \times 10^5$ ) là độ dài dãy a
- Dòng thứ hai chứa n số nguyên dương  $a_1, a_2, ..., a_n$   $(1 \le a_i \le 20242024)$ .

Kết quả: ghi kết quả lên tệp BALANCE.OUT gồm

Một số nguyên duy nhất là số lần ít nhất cần thực hiện thao tác.

#### Ví dụ:

| BALANCE.INP | BALANCE.OUT |
|-------------|-------------|
| 5           | 3           |
| 1 2 3 4 5   |             |
| 2           | 1           |
| 1 2         |             |

#### Giải thích:

Ở ví dụ 1, ta thực hiện cộng  $a_2$  cho 1, trừ  $a_4$  và  $a_5$  cho 1. Sau 3 lần thực hiện thao tác, dãy a trở thành 1,3,3,3,4, và có vị trí p=3 thỏa mãn yêu cầu đề bài.

#### Ràng buộc:

- Subtask 1 (15% số điểm):  $n \le 10$ ,  $a_i \le 5$
- Subtask 2 (15% số điểm):  $n \le 1000$
- Subtask 3 (30% số điểm): Không cần thực hiện quá 2 thao tác để dãy a thành dãy đẹp
- Subtask 4 (40% số điểm): Không có ràng buộc gì thêm.

## https://hpcode.edu.vn



Trung thu sắp đến, Bờm quyết định trang trí khu du lịch của mình. Trước cửa khu du lịch, có một hàng gồm N cây, đánh số từ 1 đến N theo chiều từ trái sang phải, cây thứ i có độ cao  $h_i$ . Bờm quyết định chọn một số cây để treo, mỗi cây một đèn lồng đỏ trên ngọn, sao cho khi nhìn từ ngoài vào, các đèn lồng sẽ tạo thành một chữ M.

Chữ M được định nghĩa như sau: đó là một dãy các cây, khi xét từ trái sang phải, có thể chia thành 4 phân đoạn, trong đó độ cao các dãy trong đoạn đầu tiên tăng nghiêm ngặt, trong đoạn thứ hai giảm nghiêm ngặt, trong đoạn thứ ba tăng nghiêm ngặt và trong đoạn thứ tư giảm nghiêm ngặt.

Tức là, có một dãy các chỉ số  $a_1 < a_2 < \cdots < a_i < b_1 < b_2 < \cdots < b_j < c_1 < c_2 < \cdots < c_k < d_1 < d_2 < \cdots < d_l$  sao cho:

- Dãy  $h_{a1}, h_{a2}, ..., h_{ai}$  là dãy tăng nghiêm ngặt  $i \geq 2$ .
- Dãy  $h_{ai}$ ,  $h_{b1}$ , ...,  $h_{bj}$  là dãy giảm nghiêm ngặt  $j \ge 1$ .
- Dãy  $h_{bj}, h_{c1}, \dots, h_{ck}$  là dãy tăng nghiêm ngặt  $k \geq 1$ .
- Dãy  $h_{ck}$ ,  $h_{d1}$ , ...,  $h_{dl}$  là dãy giảm nghiêm ngặt  $l \geq 1$ .

Độ hoành tráng của chữ M là số lượng đèn lồng tạo thành chữ M.

Yêu cầu: Hãy tìm độ hoành tráng lớn nhất của một chữ M mà Bờm có thể tạo được.

Dữ liệu: Vào từ tệp văn bản MCHAR.INP

- Dòng 1 chứa số nguyên dương  $N \le 50000$
- Dòng 2 chứa N số nguyên dương không vượt quá 10<sup>9</sup>

Dữ liệu đảm bảo tồn tại ít nhất một cách treo đèn. Các số trên một dòng của input file được ghi cách nhau bởi dấu cách.

**Kết quả:** In ra tệp văn bản MCHAR.OUT độ hoành tráng lớn nhất của một chữ M có thể có. **Ví dụ:** 

| MCHAR.INP                               | MCHAR.OUT |
|-----------------------------------------|-----------|
| 15                                      | 12        |
| 1 20 15 30 25 20 15 40 30 20 10 5 4 6 8 |           |

**Giải thích:** Các cây tạo thành hình chữ M có độ cao là: 1 20 30 25 20 15 40 30 20 10 5 4. Độ hoành tráng là 12.

## Ràng buộc:

• Subtask 1: 20% số điểm  $N \le 50$ 

• Subtask 2: 50% số điểm  $N \le 1000$ 

• Subtask 3: 15% số điểm  $h_i \le 1000$ 

• Subtask 4: 15% số điểm  $N \le 50\ 000$ ;  $h_i \le 10^9$ 

#### Bài 3: Dãy chữ số

Bờm và Cuội cùng chơi trò chơi với dãy số như sau: Bờm viết liên tiếp một dãy số gồm n chữ số thập phân, tiếp theo Cuội tách dãy chữ số trên thành các nhóm chữ số để nhận được một dãy số. Sau đó cả hai bạn cùng tiến hành tìm dãy con tăng dài nhất từ dãy số mới nhận được.

## https://hpcode.edu.vn

**Ví dụ:** Bờm viết dãy chữ số thập phân 314159265358979, nếu Cuội tách dãy trên thành dãy số gồm 6 số: 3, 14, 159, 26, 53, 58979 thì cả hai bạn sẽ tìm được dãy con tăng dài nhất gồm 5 số là: 3, 14, 26, 53, 58979. Nhưng nếu Cuội tách thành dãy số gồm 10 số: 3, 1, 4, 1, 5, 9, 26, 53, 58, 979 thì cả hai bạn sẽ tìm được dãy con tăng dài nhất gồm 8 số là: 3, 4, 5, 9, 26, 53, 58, 979.

**Yêu cầu:** Cho dãy chữ số thập phân mà Bờm viết, hỏi với cách chơi như trên thì hai bạn có thể tìm được dãy con tăng dài nhất tối đa là bao nhiêu phần tử?

Dữ liệu: vào từ tệp văn bản INCSEQ.INP có dạng:

- Dòng đầu tiên ghi số nguyên dương n ( $1 \le n \le 1000$ )
- Dòng thứ hai là một xâu gồm n chữ số thập phân.

Kết quả: In ra tệp văn bản INCSEQ.OUT một số duy nhất là độ dài của dãy con tăng dài nhất tìm được.

| INCSEQ.INP      |   | INCSEQ.OUT |
|-----------------|---|------------|
| 15              | 8 | <u> </u>   |
| 314159265358979 |   | 44         |
| 10              | 9 |            |
| 1230456789      |   |            |

# Bài 4. Đường truyền

Công ty có một hệ thống mạng nội bộ gồm n thiết bị và m dây nối giữa các cặp thiết bị. Các thiết bị được đánh số từ 1 đến n. Các dây nối được đánh số từ 1 đến m. Dây nối thứ i  $(1 \le i \le m)$  kết nối hai thiết bị  $X_i, Y_i$  và có độ trễ là  $W_i$ . Đảm bảo không có hai dây nối nào kết nối cùng một cặp thiết bị và luôn tồn tại ít nhất một đường truyền giữa hai cặp đỉnh bất kì.

Gọi đường truyền giữa hai thiết bị X và Y là dãy các thiết bị  $(X = x_1, x_2, ..., x_k = Y)$  sao cho với mọi i  $(1 \le i < k)$  thì có dây nối giữa hai đính  $x_i$  và  $x_{i+1}$ , và độ trễ của đường truyền trên là tổng độ trễ của các dây nối giữa các  $x_i$  và  $x_{i+1}$ .

Gọi độ trễ giữa hai thiết bị X và Y là độ trễ bé nhất của đường truyền bất kì giữa hai thiết bị X và Y.

Sắp tới bạn được giao nhiệm vụ cải tạo một trong những đường truyền có độ trễ bé nhất giữa hai thiết bị *S* và *T* (chọn đường truyền nhanh nhất để tiết kiệm chi phí).

Nếu bạn chọn cải tạo đường truyền  $(S = y_1, y_2, ..., y_k = T)$  thì với mọi i  $(1 \le i < k)$ , dây nối giữa các cặp thiết bị  $y_i$  và  $y_{i+1}$  sẽ được giảm độ trễ xuống bằng 0 (các dây nối thuộc đường truyền được cải tạo hầu như không còn độ trễ). Vì lí do riêng mà bạn muốn sau lần cải tạo này độ trễ giữa hai thiết bị U và V là bé nhất có thể.

Dữ liệu: vào từ tệp văn bản PATH.INP

- Dòng đầu tiên chứa hai số nguyên n, m  $(2 \le n \le 10^5, 1 \le m \le 2 \times 10^5)$  là số thiết bị và số dây nối
- Dòng thứ hai chứa hai số nguyên  $S, T \ (1 \le S, T \le n, S \ne T)$
- Dòng thứ ba chứa hai số nguyên  $U, V (1 \le U, V \le n, U \ne V)$
- m dòng tiếp theo, dòng thứ i chứa ba số nguyên  $X_i$ ,  $Y_i$ ,  $W_i$  tương ứng với một dây nối giữa hai thiết bị  $X_i$  và  $Y_i$ , dây nối thứ i có độ trễ là  $W_i$  ( $1 \le X_i < Y_i \le n$ ,  $1 \le W_i \le 10^9$ ).

Kết quả: ghi kết quả lên tệp PATH.OUT





Một dòng duy nhất chứa một số nguyên, là độ trễ nhỏ nhất có thể giữa hai thiết bị U và V sau khi cải tạo các kết nối.

## Ví dụ:

| PATH.INP | PATH.OUT |
|----------|----------|
| 6 6      | 2        |
| 1 6      |          |
| 1 4      |          |
| 1 2 1    |          |
| 2 3 1    |          |
| 3 5 1    |          |
| 2 4 3    |          |
| 4 5 2    |          |
| 5 6 1    |          |

#### Giải thích:

Lựa chọn cải tiến đường truyền: (1, 2, 3, 5, 6)

Sau đó đường truyền có độ trễ nhỏ nhất giữa hai thiết bị 1 và 4 là (1, 2, 3, 5, 4). Trong đó độ trễ của dây nối giữa hai thiết bị 5 và 4 là 2, độ trễ của các dây nối còn lại trên đường truyền này đều là 0.

## Ràng buộc:

- Subtask 1: (16% số điểm) S = U
- Subtask 2: (15% số điểm) có duy nhất một đường truyền có độ trễ nhỏ nhất giữa hai thiết bị
  S và T
- Subtask 3:  $(24\% \text{ số điểm}) n \leq 300$
- Subtask 4: (45% số điểm) không có ràng buộc gì thêm

Thí sinh không được sử d<mark>ụ</mark>ng tài liệu. Cán bộ coi thi không giải thích gì thêm.